Log in or Register for enhanced features | Forgotten Password?
White Papers | Suppliers | Events | Report Store | Companies | Dining Club | Videos
Energy Management
Energy Storage
Return to: CTBR Home | Energy Management | Energy Storage

Rolls-Royce, Superdielectrics partner to explore high energy storage technology potential

Published 20 March 2018

Rolls-Royce has signed an agreement of collaboration with UK-based technology start-up Superdielectrics to explore the potential of using polymers with recently discovered properties to develop high energy storage technology.

The agreement will see Rolls-Royce combine its world-class material science and technical expertise with Superdielectrics’ novel hydrophilic polymers that have been shown by Superdielectrics Ltd, in partnership with researchers from the Universities of Bristol and Surrey, to have potentially outstanding energy storage properties.

Rolls-Royce, central technology director Dave Smith said: “We are very pleased to be working with Superdielectrics Ltd at a time of rapidly-evolving developments in the energy storage industry. We bring deep experience of materials technology and advanced applications that require high energy storage capabilities with controllable rates of recovery.

"We believe that electrification will play an increasingly important role in many of our markets over the coming years and by working with partners on potential new technologies for energy storage we can ensure that Rolls-Royce is well positioned to take advantage of new developments.”

Superdielectrics CEO Jim Heathcote said: “We are delighted to be working with Rolls-Royce in the global race to develop advanced energy storage systems. This agreement gives us access to their unparalleled scientific and technical expertise. I hope this agreement will ultimately create new jobs and business opportunities in the UK.”

Working with researchers from the Universities of Bristol and Surrey, Superdielectrics Ltd has been developing hydrophilic materials, similar to those originally designed for soft contact lenses, to increase the electricity storage capabilities of capacitors, which store electricity by creating electrostatic fields.

These potentially exciting dielectric polymers may provide an opportunity to create capacitors that are able to rival – and even exceed – the storage capacity of traditional rechargeable batteries. The resulting supercapacitors may also be able to charge much faster than existing lithium-ion batteries. The exact terms of the agreement between Rolls-Royce and Superdielectrics remain confidential.



Source: Company Press Release